Printing boards and sheets

Atoms, Nuclei and the Periodic Table

Everything is made up of atoms! They are tiny - for example, a human hair is a million atoms thick.

The Periodic Table

- Rows (= period): ascending order of the number of protons (atomic number)
- Columns (= group): similar properties of atoms

Hydrogen 1 H 1,007975	Periodic table of chemical elements															Helium 2 He 4,002602	
Lithium 3	Beryllium	Atomic num	ber									Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
Li	Be	— Chemical syr — Relative ator	mbol mic mass [or 1	that of the m	nost stable i	sotope]						В	С	N	0	F	Ne
6,9395 Sodium	Magnesium	Source: CIAA	AW "Atomic V	Veights 2013	8" + Rev. 20	15)						Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
Na	12 Mg											13 A	14 Si	15 P	16 S	CI	18 Ar
22,98976928	24,005 29,083385 28,085 30,97379000 32,075 35,4955															39,948	
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chrome 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
К	Ca	Sc	ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,0983	40,078	44,955908	47,867	50,9415	51,9961	54,938044	55,845	58,933194	58,6934	63,546	65,38	69,723	72,630	74,921595	78,971	79,904	83,798
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lode 53	Xenon 54
Rb	Sr	Y	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85,4678	87,62	88,90584	91,224	92.90637	95,95	[98]	101,07	102,90550	106,42	107,8682	112,414	114,818	118,710	121,760	127,60	126,90447	131,293
Cesium 55	Barium 56	Lanthanides	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
Cs	Ba	57-71	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
132,905452	137,327		178,49	180,94788	183,84	196,207	190,23	192,217	195,084	196,966569	200,592	204,3835	207,2	208,98040	[209]	[210]	[222]
87	88	Actinides	Rutherfordium 104	105	106	Bohrium 107	108	109	110	Roentgenium 111	Copernicium 112	Nihonium 113	Flerovium 114	Muscovium 115	Livermorium 116	Tennessine 117	Oganesson 118
Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
[223]	[226]		[267]	[268]	[269]	[270]	[277]	[278]	[281]	[282]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
			Lanthanum	Cerium 58	Praseodymium 59	Neodymium 60	Prometheum 61	Samarium	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutecium 71
		1.1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			138,90547	140,116	140,90766	144,242	[145]	150,36	151,964	157,25	158,92535	162,500	164,93033	167,259	168,93422	173,045	174,9668
			Actinium 89	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
			Ac	Th	Pa	Ű	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
[227] 232.0377 23.03546 238.02691 [237] [244] [244] [247] [247] [247] [257] [257]													[258]	[259]	[266]		
			Metals						Non-	metals							
Alkaline	Alkali eart	ne h Lanthanio	des Actinie	des Tra	nsition letals	Poor metals	Metalloids	Other no metals	on- Halo	gens No	oble gases	Not classified	P	rimordial	Decay of of element	ther s	Synthetic

Radio-activities of the Mr musée CURIE

The one who finds the

most of pairs won!

Radio-activities of the Mr musée CURIE

Radioactivity

When atoms contain too many nucleons, or when there is too great an imbalance between the number of protons and neutrons, the force that holds the nucleus together is no longer sufficient. The atoms then tend to reorganize themselves to become stable this is referred to as radioactivity.

When this happens, the nuclei decay and emit particles and energy in the form of radiation. 3 types of radiation can occur: alpha α , beta β , and gamma y.

27 protons 33 neutrons

Nickel ⁶⁰₂₈Ni 28 protons 32 neutrons

Anti-neutrino 🔻

Silicon ³⁰₁₄Si

14 protons

16 neutrons

Phosphorus ³⁰₁₅P

15 protons

15 neutrons

Depending on the type of rays, different types of protection are required:

3 Follow the instructions to obtain the new core and the radiation emitted (help yourself with the colored tokens) and continue until you obtain a stable core

At the end of the game, all the rays emitted are those that you would have received if you manipulated these radioactive atoms!

Radio-activities of the Mr musée CURIE

The Radioactive Family of Uranium

In uranium ores, such as pitchblende, there are many other highly radioactive atoms, such as radium and polonium, discovered in 1898 by Marie and Pierre Curie.

In fact, uranium decays into a radioactive atom, which in its turn decays into a radioactive atom until it forms a stable atom - this is called the radioactive family of uranium. Radium and polonium are part of this family, which is why they are found in uranium ores.

The more radioactive the atoms, the faster they decay.

Take the card corresponding to the uranium 238 nucleus and put it on the board Πc STABLE CORE 8 238 3 NEW CORE +**RAY EMITTED** RADIOAC Obtained -TIVE ? CORE 2 Follow the disintegration and place the card of the atom obtained and that of the ray emitted in their corresponding box (1)(2) Πc Шс STABLE STABLE NUCLEUS NUCLEUS 90 protons 44 neutrons Alpha radioactivity: o NEW 8 ²³⁸U ²³⁴Th ²³⁴Th ++NUCLEUS Emitted RAY obtained? We get? Alpha radioactivity: 6 neutrons 8 ²³⁸ U 87 Keep:

Check that you have

well found the whole family radioactive uranium!

At the end of the game, all the rays emitted are those that you would have received if you manipulated just one of these uranium atoms!

PERIODIC TABLE OF ELEMENTS

Fluorine

RAYS EMITTED