
RADIO ACTIVITIES OF THE MUSEE CURIE

A game conceived by Claude Charvy.

To better understand the mysteries of atoms and radioactivity

RADIO ACTIVITIES OF THE MUSEE CURIE

Presentation

What is an atom? What is it made of? What is radioactivity?

"*Radio-Activities of the Musée Curie*" feature 5 activities designed with the aim of discovering and explaining radioactivity in a fun and educational way.

Inspired by card and board games,"*Radio-Activities of the Musée Curie*" help us understand that the name of the chemical elements is linked to the number of protons that make up the nuclei of atoms, that some atoms are radioactive, and that they can transform into other atoms by emitting alpha and/or beta rays (gamma radiation is not covered).

With these games you can explore these scientific notions in successive stages, and also discover the history of natural and artificial radioactivity: the elements discovered by Marie and Pierre Curie in 1898 (Polonium and Radium) and the radioactive family of Uranium-238 or Nitrogen-13, which were artificially produced by Frédéric and Irène Joliot-Curie in 1934.

You can have fun playing with the nuclei of atoms, protons, and neutrons!

Description

In this manual, you will find:

٠	The ru	les of the 5 activities:	
	0	Activity 1: Match the number of protons to its chemical element	р3
	0	Activity 2: Find the nucleus name	p4
	0	Activity 3: Beta radioactivity	p5-6
	0	Activity 4: Alpha radioactivity	р7
	0	Activity 5: The radioactive family of Uranium-238	p8-9
•	Explan	atory guides on:	
	0	Atoms, Nuclei and the Periodic Table (Activities 1 and 2)	p10-11
	0	Radioactivity (Activities 3, 4, and 5)	P12-13
	0	The radioactive family of uranium (Activity 5)	p14-15
•	Game	printing rules	p16

You will need the following materials to complete the activities:

- A periodic table
- A printed game kit

Each activity is independent and can be completed separately.

RADIO-ACTIVITY 1:

Match the number of protons to its chemical element

First, the presenter gives a presentation on atoms and nuclei. See the explanatory guide "Atoms, Nuclei and the Periodic Table" p 10-11.

Objective: To make it clear that a chemical element is defined by the number of protons contained in its nucleus.

Materials:

- 1 periodic table
- Activity 1 Game Kit:
 - 12 cards with the Symbols and the names of the Chemical Elements
 - Level 1: H, He, B, C, N, O, F, Ca, Fe, Cu, Ag and Au
 - Level 2: Hg, Pb, Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U
 - 12 labels with the number of protons
 - Level 1: 1, 2, 5, 6, 7, 8, 9, 20, 26, 29, 47, 79
 - Level 2: 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92

Setup:

- The cards with the elements are shuffled and turned over (blank side up).
- The labels with the number of protons are laid out (number of protons on top).

How to play:

The game can be played alone or in teams of 2 players who take turns.

- Draw a card with a chemical element.
- Use the periodic table to find the label with the right number of protons.
- Place the label on top of the chemical element card.
- The game is over when all the cards/labels have been matched.

Variant:

- The player places all the element cards in front of them face up, and the labels are placed in a canvas bag
- Player randomly draws a label with a number of protons and matches the corresponding chemical element with it using the periodic table

RADIO-ACTIVITY 2:

Find the name of a nuclei

First, the presenter gives a presentation on atoms and nuclei. See the explanatory guide "Atoms, Nuclei and the Periodic Table" p 10-11.

Objective: To understand how the atoms are named, then deduce the number of protons and neutrons contained in the nuclei.

Materials:

r of nucleons s + neutron) + Hydrogen 2 (Deuterium)

- 1 periodic table
- Activity 2 Game Kit:
 - 16 cards with the Symbols, the names of the chemical elements, and the number of nucleons
 - Level 1: ${}^{1}_{1}H$, ${}^{2}_{1}H$, ${}^{2}_{2}He$., ${}^{1}_{5}B$., ${}^{1}_{5}B$., ${}^{1}_{6}C$., ${}^{1}_{6}C$., ${}^{1}_{6}C$., ${}^{1}_{6}C$., ${}^{1}_{7}Na$, ${}$
 - Level 2: ${}^{206}_{82}Pb$, ${}^{210}_{82}Pb$, ${}^{210}_{84}Po$, ${}^{214}_{84}Po$, ${}^{218}_{84}Po$, ${}^{226}_{88}Ra$, ${}^{222}_{86}Rn$, ${}^{232}_{90}Th$, ${}^{234}_{90}Th$, ${}^{234}_{90}Th$, ${}^{234}_{90}U$, ${}^{235}_{92}U$, ${}^{235}_{92}U$, ${}^{238}_{92}U$
 - 18 Dominoes: "number of protons/number of neutrons"
 - Level 1: 1p/0n, 1p/1 n, 1p/2n, 2p/2n, 5p/6n, 5p/7n, 5p/8n, 6p/5n, 6p/6n, 6p/7n, 6p/8n, 7p/5 n, 7p/6n, 7p/7n, 7p/8n, 8p/5n, 7p/6n, 8p/7n
 - Level 2: 82p/124n, 82p/128n, 84p/126 n, 84p/130n, 84p/134n, 86p/136n, 88p/138n, 90p/142n, 90p/144n, 92p/142n, 92p/143n, 92p/146n

Setup:

- The cards with the elements are shuffled and turned over (blank side up).
- The dominoes are laid out (number of protons and neutrons facing up)

How to play:

The game can be played alone or in teams of 2 players who take turns.

- Draw a card with a chemical element.
- Use the periodic table to find the domino with the right number of protons and neutrons.
 E.g.: the C13 card will be matched with the domino: 6 protons/7 neutrons
- Place the domino on top of the chemical element card.
- The game is over when all the cards/dominoes have been matched.

Variant:

- The player places all the element cards in front of them face up, and the dominoes are placed in a canvas bag
- Player randomly draws a domino with a number of protons and neutrons and then matches the corresponding chemical element with it using the periodic table

RADIO-ACTIVITY 3:

Beta radioactivity

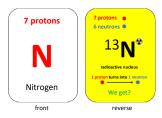
First, the presenter gives a presentation on radioactivity. See the explanatory guide "Radioactivity" p 12-13.

Objective: To understand radioactivity, isotopes, and the "transmutation of the elements". In this game we will limit ourselves to β radioactivity.

Materials:

- 1 periodic table
- Board 1: " B, C, N, O, F" (or a periodic table)
- Board 2 of the game (where we will arrange the cards during the game)
- Two-color red/blue tokens
- Activity 3 Game Kit:
 - 24 nucleus cards:
 - Front: number of protons, symbol, and name of the corresponding chemical element.
 - Back: characteristic of the isotope (number of protons/neutrons) and its stability
 - 9 emitted radiation cards:
 - Beta Radioactivity +
 - Beta Radioactivity -
 - Two-color tokens:
 - Red side: represents the protons
 - Blue side: represents the neutrons

Setup:

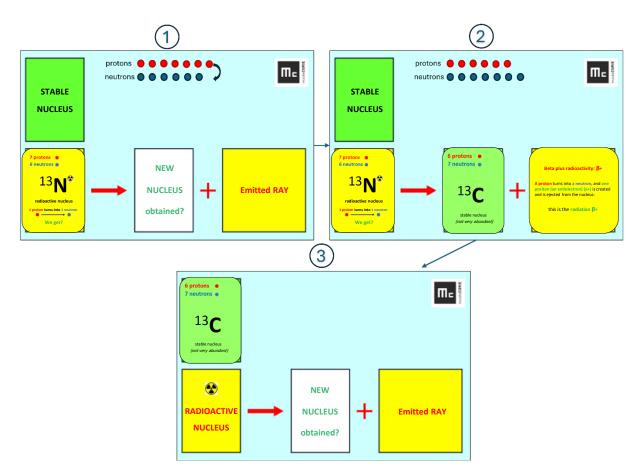

- On board 1 ("Family B, C, N, O, F") the cards by family are placed on each of the corresponding family squares (front of the cards on top)
 - The 4 Bore cards on the Bore square of board 1
 - \circ $\;$ The 6 Carbon cards on the Carbon square of board 1 $\;$
 - \circ $\;$ The 6 Nitrogen cards on the Nitrogen square of board 1 $\;$
 - The 6 Oxygen cards on the Oxygen square of board 1
 - The 2 Fluorine cards on the Fluorine square of board 1
- Put the two-color tokens in a small jar
- Arrange the emitted radiation cards next to each other

How to play:

The game can be played alone or in teams of 2 players who take turns.

We recommend playing with all the cards of the same family so as to fully understand beta radioactivity. The discovery of artificial radioactivity can be mentioned (N13).

5



- Draw a card from one of these families and place it on board 2 following the instructions on the card:
 - If the nucleus is stable (green card back) place the card on the "Stable Nucleus" square
 - The game is over, draw another card
 - If the nucleus is radioactive, place your card on the "Radioactive Nucleus" square
 - Continue playing the game
- If the nucleus is radioactive:

0

- Follow the instructions to find the new nucleus obtained during the transmutation
 - To understand the transmutation, use colored tokens: one line with the blue tokens (neutrons) and another with the red tokens (protons)
- \circ $\;$ Find the corresponding card among the isotopes and place it in the "New nucleus obtained" square
- Find the emitted ray card:
 - <u>Beta ray plus (β+)</u>: When 1 proton turns into 1 neutron, it emits a positron (antielectron: (e+)) and a neutrino (v)
 - <u>Beta radius less (β-)</u>: When 1 neutron turns into 1 proton, it emits an electron (e-) and an anti-neutrino (v̄)

RADIO-ACTIVITY 4:

Alpha radioactivity

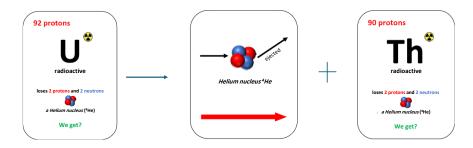
First, the presenter gives a presentation on radioactivity. See the explanatory guide "Radioactivity" p 12-13.

Objective: To understand radioactivity, isotopes, and the "transmutation of the elements". In this game we will limit ourselves to alpha radioactivity.

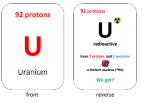
Materials:

- 1 periodic table
- Activity 4 Game Kit:
 - 11 nucleus cards (82 to 92 protons):
 - Front: number of protons, symbol, and name of the corresponding chemical element.
 - Back: cards contain information relating exclusively to alpha decays
 - o 9 emitted radiation: cards alpha radioactivity

\frown	
→	
Helium nucleus ⁴ He	


Setup:

• Lay out the 11 cards face down, arranging them in ascending order (number of protons from 82 to 92).


How to play:

The game can be played alone or in teams of 2 players who take turns. At the end of the game, the presenter can talk about radioactive families.

- Flip over the Uranium card with the 92 protons
- Follow the instructions provided on the back of the card
 - \circ $\ \ \,$ Take an emitted radiation card and place it next to the turned-over card
 - Find the new element obtained as a result of the alpha decay
- The game is over when the player comes across a card that reads: stable

RADIO-ACTIVITY 5:

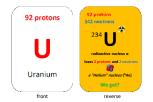
The radioactive family of Uranium (238)

First, the presenter gives a presentation on radioactivity. See the explanatory guide "Radioactivity" p 12-13.

Objective: To discover the radioactive family of Uranium-238 (U238) and to understand how radium (226), radon (222), and polonium nuclei (218, 214 and 210) are formed thanks to successive beta or alpha decays.

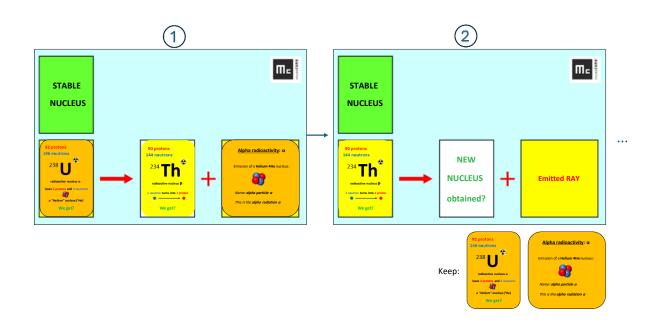
Materials:

- 1 periodic table
- Board 2 of the game (where we will arrange the cards)
- Activity 5 Game Kit:
 - \circ 36 nuclei cards
 - 7 lead nuclei (Pb 206; 207; 208; 210; 211; 212; 214)
 - 4 cards with 83 protons = 4 Bismuth nuclei (Bi 209; 210; 212; 214)
 - 4 cards with 84 protons = 4 Polonium nuclei (Po 210; 214; 216; 218)
 - 1 card with 85 protons = 1 Astatine nuclei (At 210)
 - 4 cards with 86 protons = 4 Radon nuclei (Rn 218; 219; 220; 222)
 - 1 card with 87 protons = 1 Francium nucleus (Fr 223)
 - 4 cards with 88 protons = 4 Radium nuclei (Ra 223; 224; 226; 228)
 - 2 cards with 89 protons = 2 Actinium nuclei (Ac 227; 228)
 - 4 cards with 90 protons = 4 Thorium nuclei (Th 230; 231; 232; 234)
 - 2 cards with 91 protons = 2 Protactinium nuclei (Pa 231; 234)
 - ¹ 3 cards with 92 protons = 3 Uranium nuclei (U 234); 235; 238)
 - o Emitted radiation cards
 - Beta plus (β+) radioactivity (a card with yellow background on the back)
 - Beta minus (β-) radioactivity (a card with yellow background on the back)
 - Alpha (α) radioactivity (a card with orange background on the back)


Setup:

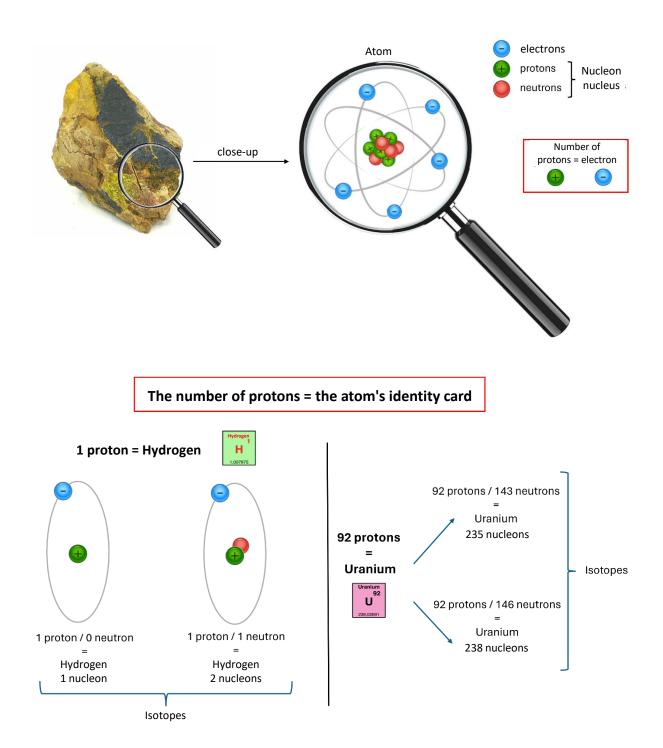
• Group the cards by chemical element, front side

How to play:


The game can be played alone or in teams of 2 players who take turns. At the end of the game, the presenter can talk about the radioactive families in detail. See the explanatory guide "The radioactive family of uranium" p 14-15.

- Turn over the Uranium card with 92 protons and place it on Board 2 on the "Radioactive nucleus" square
- Follow the instructions provided on the back of the card
 - Find the new element obtained in one of the chemical element piles (check the number of protons and neutrons on the back) and put it on Board 2
 - Match the emitted ray

- Place on Board 2 in the corresponding square the new nucleus card, as well as the card with the ray emitted during this decay
- Then remove from the board:
 - The original Uranium nuclei (238) card and keep it in front of you
 - The emitted ray card and keep it
- Move the card with the newly obtained nuclei to the left on the board square
 - \circ $\,$ On the "Stable Nucleus" square if the nucleus obtained is stable $\,$
 - \circ $\,$ On the "Radioactive Nucleus" square if the nucleus obtained is radioactive $\,$
 - In this case, continue playing the game
- The game is over when the player gets a new nucleus that is stable (Pb206)



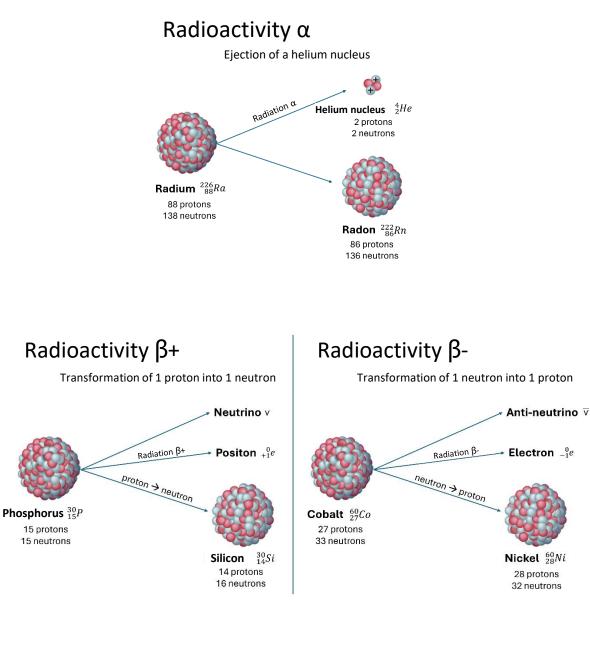
EXPLANATORY GUIDES

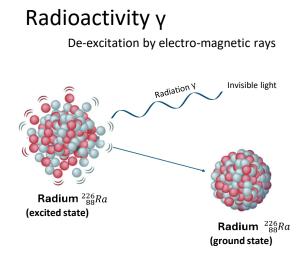
Atoms, Nuclei and the Periodic Table

Everything is made up of atoms! They are tiny - for example, a human hair is a million atoms thick.

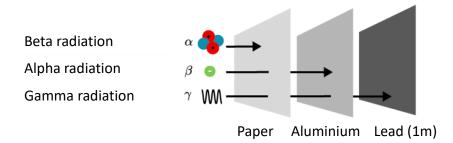
The Periodic Table

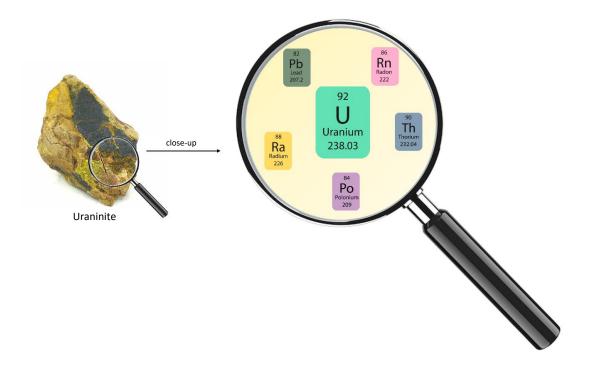
- Rows (= period): ascending order of the number of protons (atomic number)
- Columns (= group): similar properties of atoms


Hydrogen 1 H 1,007975 Lithium 3 Li 6,9395 Sodium	Periodic table of chemical elements													Helium 2 He 4.002602 Neon 10 Ne 20,797 Argon			
11 Na 22,96976928	12 Mg 13 14 15 16 17 Al Si P S Cl													18 Ar 39,948			
Potassium 19 K 39.0983	20 Ca 40,078	Scandium 21 SC 44,955908	Titanium 22 Ti 47.867	Vanadium 23 V 50,9415	24 24 Cr 51,9961	Manganese 25 Mn 54,938044	26 Fe 55,845	Cobalt 27 CO 58,933194	Nickel 28 Ni 58,6934	29 Cu 63.546	Zinc 30 Zn 65,38	Gallium 31 Ga 69,723	Germanium 32 Ge 72,630	Arsenic 33 AS 74.921595	Selenium 34 Se 78.971	8romine 35 Br 79,904	Krypton 36 Kr 83,798
Rubidium 37 Rb	Strontium 38 Sr	Yttrium 39 Y	Zirconium 40 Zr	Niobium 41 Nb	Molybdenum 42 MO	Technetium 43 TC	Ruthenium 44 RU	Rhodium 45 Rh	Palladium 46 Pd	Silver 47 Ag	Cadmium 48 Cd	Indium 49 In	Tin 50 Sn	Antimony 51 Sb	Tellurium 52 Te	lode 53	Xenon 54 Xe
85,4678 Cesium 55 CS	87,62 Barium 56 Ba	88,90584 Lanthanides 57-71	91,224 Hafnium 72 Hf	92,90637 Tantalum 73 Ta	95,95 Tungsten 74 W	[98] Rhenium 75 Re	101,07 Osmium 76 OS	102,90550 Iridium 77	106,42 Platinum 78 Pt	107,8682 Gold 79 Au	112,414 Mercury 80 Hg	114,818 Thallium 81 TL	118,710 Lead 82 Pb	121,760 Bismuth 83 Bi	127,60 Polonium 84 PO	126,90447 Astatine 85 At	131,293 Radon 86 Rn
132,905452 Francium 87	137,327 Radium 88	Actinides	178,49 Rutherfordium 104	180,94788 Dubnium 105	183,84 Seaborgium 106	196,207 Bohrium 107	190,23 Hasslum 108	192,217 Meitnerium 109	195,084 Darmstadtium 110	196,966569 Roentgenium 111	200,592 Copernicium 112	204,3835 Nihonium 113	207,2 Flerovium 114	208,98040 Muscovium 115	[209] Livermorium 116	[210] Tennessine 117	[222] Oganesson 118
Fr [223]	Ra [226]	89-103	Rf [267]	Db [268]	Sg [269]	8h [270]	HS [277]	Mt [278]	DS [281]	Rg [282]	Cn [285]	Nh [286]	Fl [289]	Mc [289]	LV [293]	Ts [294]	Og [294]
		- L	Lanthanum 57 La	Cerium 58 Ce	Praseodymium 59 Pr	60 Nd	Prometheum 61 Pm	Samarium 62 Sm	Europium 63 EU	Gadolinium 64 Gd	65 Tb	Dysprosium 66 Dy	Holmium 67 HO	Erbium 68 Er	^{Thulium} 69 Tm	Ytterbium 70 Yb	Lutecium 71 LU 174,9668
			Actinium 89 AC	140,116 Thorium 90 Th	140,90766 Protactinium 91 Pa	144,242 Uranium 92 U	[145] Neptunium 93 Np	150,36 Plutonium 94 PU	151,964 Americium 95 Am	157,25 Curium 96 CM	158,92535 Berkelium 97 Bk	162,500 Californium 98 Cf	164,93033 Einsteinium 99 ES	167,259 Fermium 100 Fm	168,93422 Mendelevium 101 Md	173,045 Nobelium 102 NO	
[977] 230,0377 [231,03586] 238,02891 [Metals						[237]	[244] [243] [247] [247] [247] Non-metals				[251]	[252]	[257]	[258]	(259)	Lawrencium 103 Lr (266)	
Alkaline	Alkal		des Actini		ansition netals	Poor metals	Metalloids	Other no metal		ogens No	oble gases	Not classified	Pr	imordial	Decay of or element		Synthetic

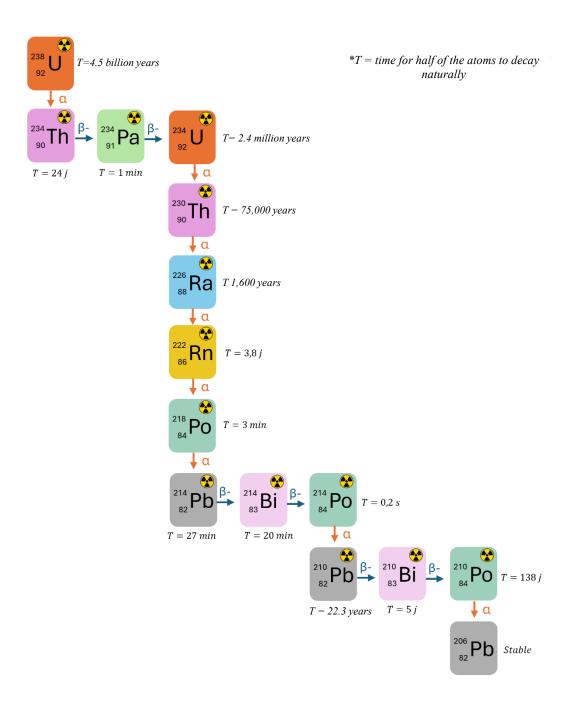

Radioactivity

When atoms contain too many nucleons, or when there is too great an imbalance between the number of protons and neutrons, the force that holds the nucleus together is no longer sufficient. The atoms then tend to reorganize themselves to become stable - this is referred to as radioactivity.


When this happens, the nuclei decay and emit particles and energy in the form of radiation. 3 types of radiation can occur: alpha α , beta β , and gamma γ .


Depending on the type of rays, different types of protection are required:

The Radioactive Family of Uranium


In uranium ores, such as pitchblende, there are many other highly radioactive atoms, such as radium and polonium, discovered in 1898 by Marie and Pierre Curie.

In fact, uranium decays into a radioactive atom, which in its turn decays into a radioactive atom until it forms a stable atom - this is called the radioactive family of uranium. Radium and polonium are part of this family, which is why they are found in uranium ores.

The more radioactive the atoms, the faster they decay.

Impression of the game

For the printing of these cards and other elements, here is a summary of the specifications:

1. Types of Materials:

- Activity Cards: Cardstock similar to playing cards.
- Boards and Sheets: Laminated sheets.

2. Double-sided Printing:

- The cards for Activities 1 and 2, as well as some solo cards from Activity 4, will not initially be printed double-sided.
- To make these cards easier to identify, we've added a colored back design.

3. Back Design Colors:

- Activity 1 Easy Version: Light blue, RGB (R: 180, G: 243, B: 254).
- Activity 1 Difficult Version: Dark blue, RGB (R: 75, G: 71, B: 239).
- Activity 2 Easy Version: Pink, RGB (R: 250, G: 172, B: 244).
- Activity 2 Difficult Version: Purple, RGB (R: 177, G: 14, B: 190).
- Activity 4 Solo Card 7x10: White, RGB (R: 255, G: 255, B: 255).

4. Final Formats and Quantities:

- Game Set: 51 A4 sheets printed double-sided.
- Boards: 3 A3 boards printed single-sided.
- Table: 1 A4 table printed single-sided.
- Sheets: 8 A4 sheets printed double-sided.

These specifications will ensure a clear and organized printing of the game components.

